Modeling Dynamic User Interests: A Neural Matrix Factorization Approach
نویسندگان
چکیده
We propose an interpretable model that combines the simplicity of matrix factorization with flexibility neural networks to evolving user interests by efficiently extracting nonlinear patterns from massive text data collections.
منابع مشابه
A social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملA Robust Nonlinear Kalman Smoothing Approach for Dynamic Matrix Factorization
The modeling of data as the product of two lower-dimensional (often matrix-valued) latent variables or factors has been widely used in applications as varied as psychometrics, finance, recommender systems, DNA microarray analysis, and foreground/background video separation. In finance, the factors often correspond to market segments and market styles; in recommender systems, the factors corresp...
متن کاملNeural Network Matrix Factorization
Data often comes in the form of an array or matrix. Matrix factorization techniques attempt to recover missing or corrupted entries by assuming that the matrix can be written as the product of two low-rank matrices. In other words, matrix factorization approximates the entries of the matrix by a simple, fixed function—namely, the inner product—acting on the latent feature vectors for the corres...
متن کاملModeling User Interests for Zero-Query Ranking
Proactive search systems like Google Now and Microsoft Cortana have gained increasing popularity with the growth of mobile Internet. Unlike traditional reactive search systems where search engines return results in response to queries issued by the users, proactive systems actively push information cards to the users on mobile devices based on the context around time, location, environment (e.g...
متن کاملModeling user interests by conceptual clustering
RE CT ED P RO Abstract As more information becomes available on the Web, there has been a crescent interest in effective personalization techniques. Personal agents providing assistance based on the content of Web documents and the user interests emerged as a viable alternative to this problem. Provided that these agents rely on having knowledge about users contained into user profiles, i.e., m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Marketing Science
سال: 2021
ISSN: ['1526-548X', '0732-2399']
DOI: https://doi.org/10.1287/mksc.2021.1293